Imperfective in Ga (Kwa, Niger-Congo)
Agata Renans — University of Potsdam

Abstract. This paper discusses the semantics of imperfective aspect in Ga focusing on its progressive interpretation. The data from Ga show the existence of the cross-categorial definite determiner that can attach either to the NP or to the VP. I argue that in order to account for the data one needs the same domain restriction mechanisms in the verbal domain as in the nominal domain. I claim that a progressive interpretation in Ga is the result of domain restriction mechanisms in the verbal domain which is modeled in terms of situation semantics in line with domain restriction mechanisms in the nominal domain.

Keywords: imperfective aspect, progressive, situation semantics, Ga language

1. Introduction

In this paper, I present a semantic analysis of the progressive in Ga, a Kwa (Niger-Congo) language spoken by ca. 600,000 speakers in the Greater Accra Region of Ghana. Ga has a rich system of overt aspectual markers. The general imperfective is marked by the suffix -ọ, as illustrated by the compatibility with a habitual interpretation in (1) and a progressive interpretation in (3):

(1) context: Every Sunday Kofi goes to swim in the ocean.
 Kofi sele-ọ.
 Kofi swim-IMPF
 ‘Kofi swims.’

Interestingly, there are two ways of expressing progressive in Ga. First, one can use the verbal prefix mii-:

(2) Progressive 1
context: Tom and his family (wife, 2 sons, and 2 daughters) are on the beach. Tom and his wife can see that Kofi is in the process of swimming. Toms’s wife says:
 Kofi mii-sele.
 Kofi PROG-swim
 ‘Kofi is swimming’

1Ga can be analyzed as a tensed language in the spirit of Matthewson (2006) or as a tenseless language in line with Tonhauser (2011). To decide which analysis is more adequate for Ga data is left for future research.
Second, one can add to an imperfective sentence the focus marker \textit{ni} and the final-clausal definite determiner \textit{le}, as in (3). Sentences of this form invariably obtain a progressive interpretation.

\begin{enumerate}
\item \textbf{Progressive 2}
\item \textit{context}: Tom and his family (wife, 2 sons, and 2 daughters) are on the beach. Tom and his wife can see a swimming child. Toms’s wife says:
\begin{enumerate}
\item Kofi *(ni) sele-\textit{O} \textit{le}.
\item Kofi FM swim-IMPF PART
\item #Kofi ni sele\textit{O}.
\item Kofi FM swim-IMPF
\item ‘It is Kofi who is swimming.’
\end{enumerate}
\end{enumerate}

Crucially, (3) without the focus particle \textit{ni} is ungrammatical. Moreover, (3) without \textit{le} obtains a habitual interpretation, as in (4):

\begin{enumerate}
\item \textit{context}: Tom’s 2 sons and daughters do not like swimming and they do not do it, but his oldest son, Kofi, loves swimming and he does it regularly.
\item a. #Kofi ni sele\textit{O} \textit{le}.
\item Kofi FM swim-IMPF PART
\item b. Kofi ni sele\textit{O}.
\item Kofi FM swim-IMPF.
\item ‘It is Kofi who swimms.’
\end{enumerate}

It follows that in Progr2, a progressive interpretation arises only when both the focus marker \textit{ni} and the definite particle \textit{le} are present in an imperfective sentence.

Even though both Progr1 and Progr2 express a progressive interpretation, their semantics is not alike. Whereas Progr1 is a general, unmarked form of progressive similar to the English one, the interpretation of Progr2 is restricted to the actual ongoing situation that the speaker has direct evidence for. I argue that the progressive interpretation in Progr2 is the result of a domain restriction mechanism in the verbal domain analogous to the one in the nominal domain modeled in the situation semantics terms.

The structure of the paper is as follows. In Section 2, I discuss the data illustrating the differences in the semantics of both types of progressive in Ga. In section 3, I present the semantic analysis of the particle \textit{ni}, the general imperfective suffix \textit{-\textit{O}}, and the definite particle \textit{le}. A short introduction to situation semantics is given in section 4. In section 5, I present the syntactic structure and the compositional derivation of Progr2. In section 6, I show how the analysis accounts for the data presented in section 2 and, finally, section 7 concludes.
2. Two types of progressive

In this section, I give a short overview of the semantic differences between two kinds of progressive in Ga. Subsection 2.1 discusses the evidential effects of both types of progressive. While Progr1 is felicitous in both direct and indirect evidential contexts, Progr2 is only felicitous in direct evidential contexts. Moreover, data in subsection 2.2 show that Progr1 can refer to not-ongoing events,\(^2\) unlike Progr2.

2.1. Evidentiality

While Progr1 is felicitous in both direct and indirect evidential contexts, Progr2 is only felicitous in direct evidential contexts, as illustrated in (5) and (6):

(5) Direct evidence context: Tom and his family (wife, 2 sons, and 2 daughters) are on the beach. Tom can see that his two sons and the youngest daughter are playing with sand, and his oldest daughter, Anna, is swimming. He says to his wife:

a. Anna mii-sele.
 Anna PROGR-swim

b. Anna ni sele-\(\mathcal{O}\) le.
 Anna FM swim-IMPF PART
 ‘ANNA is swimming.’

(6) Indirect evidence context: Tom and his family (wife, 2 sons, and 2 daughters) are on the beach. Tom can see that his two sons and the youngest daughter are playing with sand. He cannot see his oldest daughter, but the younger one told him that she was in the process of swimming. Tom says to his wife:

a. Anna mii-sele.
 Anna PROGR-swim

b. #Anna ni sele-\(\mathcal{O}\) le.
 Anna FM swim-IMPF PART
 ‘ANNA is swimming.’

Moreover, Progr2 additionally emphasizes that it is Anna (and not anybody else) who is swimming right now.

\(^2\)By not-ongoing events I mean events that are literally not ongoing in the utterance time as in (7) and (8).
2.2. Not-ongoing events

Whereas Progr1, as English progressive, can refer to not-ongoing events, Progr2 cannot, as shown in (7) and (8):

(7) Tom and John are jogging. They are talking about books. Tom asks John which books he is reading. John replies:
 a. Mii-kane ‘Harry Potter’.
 PROGR-read ‘Harry Potter’
 b. #‘Harry Potter’ ni mi kane-∅ le.
 ‘Harry Potter’ FM 1.sg read-IMPF PART
 ‘I am reading ‘Harry Potter’.’

(8) One year ago John started building a new house for his family. He wants it to be ready by December 2014. Right now John is at work in his office.
 a. John mii-ma shia.
 John PROGR-build house
 b. ??John ni ma-∅ shia le.
 John FM build-IMPF house PART
 ‘John is building a house.’

Table 1: Differences in the semantics of Progr1 and Progr2

<table>
<thead>
<tr>
<th></th>
<th>direct evident</th>
<th>indirect evident</th>
<th>not-ongoing events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progr1 (mii-)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Progr2 (ni, -∅, le)</td>
<td>✓</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

The summary of the semantic differences between Progr1 and Progr2 is presented in Table 1. The data suggest that the interpretation of Progr2 is restricted to actual ongoing situations. I argue that this is the result of domain restriction in that a domain restriction on the VP can change an aspectual interpretation of a sentence. I propose modeling this in terms of situation semantics (Kratzer, 1998; Schwarz, 2009) on a par with domain restriction in the nominal domain.

3. Analysis

In this section, I present the semantic analysis of the particle ni, the suffix -∅, and the particle le. Since the semantics of ni is a bit off the discussion of aspect and since the structure generated by ni provides the basis for the subsequent considerations, I present its semantics at the beginning of this section, in subsection 3.1. In subsection 3.2, I discuss the basic assumptions regarding the semantics of aspect and in subsection 3.3 I discuss the semantics of the imperfective in Ga (suffix -∅). The analysis of the particle le and its influence on the aspectual interpretation of sentences is
presented in subsection 3.4.

3.1. Particle *ni*

I argue that *ni* is a non-obligatory focus marker.\(^3\) This is illustrated in (9) which shows that *ni* cannot be attached to non-focus constituents:

\[
\begin{align*}
(9) & \quad \text{Nam\- (ni) kane wolo?} \\
 & \quad \quad \text{who FM read book} \\
 & \quad \quad \quad \quad \text{‘Who read a book?’} \\
 & \quad \quad a. \quad \text{Kofi (ni) kane wolo (*ni).} \\
 & \quad \quad \quad \quad \text{Kofi FM read book FM} \\
 & \quad \quad \quad \quad \quad \text{‘It is Kofi who read a book.’} \\
 & \quad \quad b. \quad \text{#Wolo (ni) Kofi kane.} \\
 & \quad \quad \quad \quad \text{book FM Kofi read} \\
 & \quad \quad \quad \quad \quad \text{‘It is a book that Kofi read.’}
\end{align*}
\]

Crucially for the analysis, *ni* gives rise to an exhaustive interpretation\(^4\). If *ni* did not give rise to an exhaustive interpretation, then it would be possible to felicitously utter (10), contrary to fact.

\[
(10) \quad \text{#Felix ni kane-\- wo lo ni Kofi ni kane-\- wo lo.} \\
 & \quad \quad \text{Felix FM read-IMPF book and Kofi FM read-IMPF book} \\
 & \quad \quad \quad \quad \text{‘It is John who reads a book and it is Kofi who reads a book.’}
\]

I claim that *ni* introduces a cleft-like structure and indicates that an element attached to it should be interpreted exhaustively, i.e. it gives rise to the structure in (11):

\(^3\)\text{*ni* also occurs in many other environments, e.g. as a conjunction (I am leaving aside this use of *ni*), and as a complementizer which provides support for assigning *ni* a high structural position in \(C\), as proposed in (11).}

\(^4\)\text{Data from Ga show that an exhaustivity effect generated by *ni* is not as strong as an exhaustivity effect generated by *only* but rather resembles an exhaustivity generated by English cleft constructions.}
3.2. Aspect — background information

I assume a threefold distinction between event time, i.e., the time at which an event takes place, topic time, i.e., the time the speaker talks about, and utterance time, i.e., the time at which the truth of the proposition is evaluated (Reichenbach, 1947; Klein, 1994). The role of aspect is to relate the event time and the topic time. In particular, imperfective aspect locates the topic time within the running time of the event (Klein, 1994; Kratzer, 1998):

(12) \[
\lambda P. \lambda t. \lambda w. \exists e [t \subseteq \tau(e) \land P(e)(w)]
\] (Kratzer, 1998)

I argue that general imperfective in Ga is marked by the suffix -\(O\). I propose the lexical entry for -\(O\) as in (13) which is a modification of Kratzer’s (1998) lexical entry presented in (12). The difference is that I do not assume that the imperfective takes a world argument:

(13) \[
\lambda P. \lambda t. \exists e [t \subseteq \tau(e) \land P(e)]
\]

(14) Kofi sele-\(O\).
Kofi swim-IMPF
‘Kofi swims’

It follows that (14) is compatible with both habitual and progressive interpretation. However, due to the blocking principle it obtains by default a habitual interpretation. The structure of (14) up to the TP is in (15) and its interpretation is given in (16):
(15)

\[
\begin{align*}
\text{TP} \quad & \\
\quad \downarrow t \\
\text{t\textsubscript{top}} \quad & \\
\quad \downarrow i \\
\text{AspP} \quad & \langle it \rangle \\
\quad \downarrow \neg \quad & \\
\text{VP} \quad & \langle \epsilon t, it \rangle \\
\quad \downarrow \quad & \langle \epsilon t \rangle \\
\quad \downarrow \quad & \text{x\textsubscript{1} sele}
\end{align*}
\]

(16) \[[\text{TP}]^p = 1 \text{ iff } \exists e [t\text{\textsubscript{top}} \subseteq \tau(e) \wedge e = \text{swim} \wedge Ag(e) = g(1)] \approx \text{There is an event of swimming, the running time of which } (\tau(e)) \text{ includes the topic time } (t\text{\textsubscript{top}})\]

3.3. Habitual and Progressive

I build the analysis on Ferreira (2005) who claims that habitual and progressive have the same temporal (and modal) components, but they differ with respect to the number of events being quantified over. Whereas in the progressive a singular event is quantified over, thereby expressing the meaning that a singular event is ongoing (17-a), in the habitual plural events are quantified over, thereby expressing the meaning that a sequence of events is ongoing (17-b):

(17) \begin{align*}
a. \quad [[\text{Imp\textsubscript{sg}}]] &= \lambda P\textsubscript{sg} . \lambda t . \exists e [t \subseteq \tau(e) \& P(e) = 1] \rightarrow \text{progressive interpretation} \\
b. \quad [[\text{Imp\textsubscript{pl}}]] &= \lambda P\textsubscript{pl} . \lambda t . \exists e [t \subseteq \tau(e) \& P(e) = 1] \rightarrow \text{habitual interpretation}
\end{align*}

(Ferreira, 2005)

I argue that there is a quantification over a definite singular event in Progr2 in Ga. Nonetheless, unlike in Ferreira’s (2005) account, the singular event in the denotation of Progr2 in Ga is not introduced by a covert singular determiner but by the interaction between the definite determiner \textit{le} and the exhaustive focus marker \textit{ni}. In the next subsection, I discuss the semantic contribution of \textit{le}. The role of \textit{ni} in the Progr2 construction, on the other hand, is explained in section 4.
3.4. The particle \(le \)

The particle \(le \) can attach to the NP or to the VP. When attached to the NP, \(le \) functions as a definite determiner, as illustrated by the infelicity of (18):

(18) *Shikatooho \(le \) y\(e \) Osu ni shikatooho \(le \) y\(e \) Jamestown.
 bank PART to.be Osu and bank PART to.be Jamestown
 ‘The bank is in Osu and the bank is in Jamestown.’

I argue for a full parallelism between the nominal and the verbal domain. Therefore, I claim that the particle \(le \) functions as the definite determiner also when attached to the VP. It takes a property and says that the unique contextually salient event has that property, as in (19):

(19) \[[le] = \lambda P.t e P(e)\] [preliminary]

Hence, the structure of the imperfective TP with \(le \) is as in (20) and its denotation is given in (21):

(20)

\[
\begin{array}{c}
\text{TP} \\
\text{t} \\
\text{t}_{\text{top}} \\
\text{i} \\
\text{AspP} \\
\langle it \rangle \\
\text{VP}_2 \\
\text{\langle et}, it \rangle \\
\text{type-clash; type-shift from} \\
\epsilon \rightarrow \langle et \rangle \\
\text{VP}_1 \\
\text{\langle et \rangle} \\
\text{\langle et}, e \rangle \\
\text{x}_1 \text{ sele} \\
\end{array}
\]

(21) \[[\text{TP}]^g = 1 \text{ iff } \exists e[t_{\text{top}} \subseteq \tau(e) \land e = t e' \land \text{swim}(e) \land \text{Ag}(e) = g(1)] \approx \text{There is a unique event of swimming, the running time of which includes the topic time} \]

Since there is a type-clash between \(\text{VP}_2 \) and -\(\circ \) (aspect requires an input of type \(\langle \epsilon, t \rangle \)), whereas \(\text{VP}_1 \) modified by \(le \) is of type \(\epsilon \), \(\text{VP}_2 \) must be type-shifted in a Partee-style (1987) from \(\epsilon \) to \(\langle et \rangle \).
However, the VP le, same as the NP le, is usually not interpreted with respect to the whole world but with respect to a part of the world — a salient situation. Therefore, there is a need for a domain restriction mechanism which would constrain the interpretation of NP le and VP le to a given situation. I argue that the required domain restriction mechanism can be modeled in a situation semantic framework (Kratzer (2007), Schwarz (2009)).

4. Situation semantics

This section discusses some basic assumptions of situation semantics (Kratzer, 2007; Schwarz, 2009). In this framework, a proposition is not a set of possible worlds but a set of possible situations. A situation itself is a part of the world with the world being the maximal situation.

In subsection 4.1, I discuss situation pronouns. I assume a situation pronoun in the syntax (Percus, 2010; Schwarz, 2009, 2012) which restricts either the interpretation of the NP or the VP. Following Musan (1995); Keshet (2008); Büring (2004); Schwarz (2009), I argue that a situation pronoun is introduced in the syntax as the sister of a (strong) determiner. Subsequently, in subsection 4.2 I discuss the role of topic situations in domain restriction. Finally, in subsections 4.3 and 4.3.4 I explain the concept of exemplification (Kratzer, 2007) and its role in the aspectual interpretation of a sentence.

4.1. Situation pronouns

In situation semantics, NPs are interpreted relative to a situation introduced by a covert situation pronoun present in the syntax. For that reason the meaning of an NP is constrained to entities within a given situation, i.e., within the given part of the world. I advocate for a full parallelism between domain restriction in the nominal and verbal domain. Therefore, I argue that the interpretation of a VP can also be restricted by a situation pronoun to the events within the given situation, i.e., within a certain part of the world.

There is an ongoing discussion, where the situation pronoun can be present in the syntax. I am following Musan (1995); Büring (2004); Keshet (2008); Schwarz (2009) in saying that the situation pronoun is introduced in the syntax by a strong determiner, as in (22):

(22) \[\text{DP} \]
 \[\text{D'} \quad \text{NP} \]
 \[\text{D} \quad \text{s} \]

Looking at Ga, I argue that the situation pronoun is also introduced by a strong determiner, namely
the definite determiner \(l \). It can be attached either to the NP or to the VP introducing the situation pronoun which restricts the interpretation of the respective element.

Therefore, the lexical entry of \(l \) given in (19) must be revised as in (23):

\[
(23) \quad [[l]] = \lambda s.\lambda P.\lambda e P(e)(s) \quad \text{[final]}
\]

\[
(24) \quad \text{VP}_2 \quad \langle e \rangle \rightarrow \langle et \rangle
\]

\[
\text{VP}_1 \quad \langle e, st \rangle
\]

\[
\times_1 \quad \text{sele}
\]

\[
\text{DP} \quad \langle \langle e, st \rangle \rangle
\]

\[
\times_1 \quad \text{sele}
\]

\[
\text{DP} \quad \langle \langle e, st \rangle \rangle
\]

\[
\text{le} \quad \langle s \langle \langle e, st \rangle \rangle \rangle
\]

The situation pronoun, as other pronouns, can be either bound or interpreted with respect to an assignment function. I argue that in Progr2, the situation pronoun is bound by a topic situation.

4.2. Topic situation

In situation semantics, each sentence is interpreted with respect to a topic situation (Kratzer, 2007; Schwarz, 2009), i.e., the situation a sentence is about. Consider (25):

\[
(25) \quad \text{A: What was Maria doing yesterday at 17:00?} \\
\text{B: Maria was swimming.}
\]

The topic situation of (25) is a Maria-swimming situation that took place yesterday at 17:00. Formally, the topic situation can be indicated by a topic time or/and by a question under discussion (QUD). Following Kratzer (2007) and Schwarz (2009), I claim that the topic situation is provided by a QUD, where the question extension is the one proposed by Groenendijk and Stokhof (1984):

\[
(26) \quad \text{topic situation:} \\
\text{\(s_{\text{topic}} = \lambda s.\lambda X.\lambda (\text{question extension})(s) \wedge s \leq w_0 \)}
\]

Topic situations are introduced in the syntax as arguments of a topic operator, defined in (27):

\[5\] EX stands for exemplification which will be discussed in subsection 4.3.
(27) \[[[\text{topic}] = \lambda p.\lambda s'.\lambda s. s \approx s' \land p(s) \] (Schwarz, 2009)

Crucially for the analysis, I argue that in Progr2 the situation pronoun – introduced by the definite determiner \(le \) attached to the VP – is bound by the topic situation. This restricts the VP interpretation to events within the topic situation, the situation a sentence is about. In the same way the interpretation of the NP denotation can be restricted to entities within the topic situation when \(le \) attaches to an NP.

However, it seems that the notion of the topic situation should be more restrictive, i.e., the possibility that the topic situation of (25) includes Maria and other people, or Maria swimming and doing other things should be excluded, at least in some cases. It occurs that topic situations should be in some sense minimal. The concept of minimality I adopt is provided by the notion of exemplification (Kratzer, 2007), discussed in the next subsection.

4.3. Exemplification

4.3.1. Exemplification in the nominal domain

The simple notion of minimality which says that a situation is a minimal situation in which a proposition \(p \) is true iff it has no proper parts in which \(p \) is true, cf. (28-b), causes problems for mass nouns in the nominal domain and for the states and progressive events in the verbal domain. For example, it makes it impossible to detect the minimal situation of a sitting event. Kratzer (2007) defines a notion of exemplification which provides a concept of minimality also for the problematic cases:

(28) a. A situation \(s \) exemplifies a proposition \(p \) iff whenever there is a part of \(s \) in which \(p \) is not true, then \(s \) is a minimal situation in which \(p \) is true.

b. A situation is a minimal situation in which a proposition \(p \) is true iff it has no proper parts in which \(p \) is true. (Kratzer, 2007; Schwarz, 2009)

The definiens in (28-a) has the form of implication: \(p \rightarrow q \), which equals \(\neg p \lor q \). It follows that a situation \(s \) exemplifies a proposition \(p \) if either \(p \) is true in all subparts of \(s \) or \(s \) is a minimal situation in which \(p \) is true. Intuitively, exemplification assures that there is nothing in a situation that is not needed to evaluate the truth of a sentence. Consider situation M and the proposition in (29):
Situation$_M$: mud

(29) λs. there is mud in s

The proposition in (29) is not only true in s_M but since it is true in all subsituations of s, it is also exemplified by s_M. Now, consider situation 1, situation 2, and the proposition in (30):

Situation 1: three turtles
Situation 2: one turtle

(30) λs. there is a turtle in s

The proposition in (30) is true in s_1. However, since there are two turtles in s_1 that are not needed to evaluate the truth of (30), s_1 is not a minimal situation in which (30) is true. Hence, (30) is not exemplified by s_1. By contrast, there is nothing in s_2 that is redundant to evaluate the truth of (30), i.e., s_2 is a minimal situation in which (30) is true. Therefore, (30) is not only true in s_2 but also exemplified by s_2.

4.3.2. Exemplification in the verbal domain

There is an analogous mechanism of exemplification in the verbal domain as in the nominal domain, presented above. Consider the proposition in (31):

(31) λs. Kofi swim in s

The proposition in (31) is true in a situation with a multitude of swimming events but it is not exemplified by this situation. On the other hand, (31) is not only true in a situation with a single event but also exemplified by this situation.

I claim that it is encoded syntactically whether exemplification proceeds with respect to the NP or the VP denotation. As already discussed in subsection 4.1, I assume a covert situation pronoun in the syntax that restricts either the interpretation of the NP or the VP, depending on its position in the structure. Since I argue that the situation pronoun is introduced as the sister of the definite determiner $l\epsilon$, the syntactic position of $l\epsilon$ determines with respect to which element the exemplification proceeds. When $l\epsilon$ attaches to the NP, then the NP denotation is exemplified, when it attaches to the VP, then the VP denotation is exemplified.
In the next subsection, I discuss in which case a proposition is exemplified by a topic situation and when not.

4.3.3. Exemplification and exhaustivity

Crucially for the analysis, there is an intimate connection between an exhaustive answer to a QUD (which in Ga is morphologically marked by the exhaustive focus marker ni) and exemplification. Kratzer (2007) advocates that exhaustive answers are necessarily exemplified by topic situations, whereas non-exhaustive answers are merely true in topic situations. Therefore, the presence of ni, the exhaustive focus marker, assures that a proposition expressed by a sentence is exemplified by a topic situation. Hence, the following generalization holds:

- \(+ni \rightarrow \) a proposition is necessarily exemplified by a topic situation
- \(-ni \rightarrow \) a proposition is true in a topic situation

In the next subsection, I discuss informally how the combination of the focus marker ni, the definite determiner le, and the general imperfective -\(\sigma \) invariably give rise to a progressive interpretation.

4.3.4. Aspectsual interpretation of a sentence in situation semantics

Exhaustive answers to QUDs are exemplified by a topic situation and non-exhaustive answers are merely true in a topic situation. Hence, the presence of the exhaustive focus marker ni assures that the proposition denoted by a sentence is exemplified by a topic situation. On the other hand, a situation pronoun is introduced in the syntax as the sister of the definite determiner le. Hence the syntactic position of le determines whether the NP or the VP denotation is interpreted with respect to the topic situation. When le attaches to the VP, the iota operator denoted by le and exemplification introduced by ni assure that there is only one event of the given type in the topic situation. Therefore, an imperfective sentence with le attached to the VP and ni expresses the meaning that one event is ongoing which invariably leads to a progressive interpretation. On the other hand, when there is no le attached to the VP, the VP denotation is not exemplified by the topic situation. Hence the sentence can express the meaning that the plural events are ongoing, thereby leading to a habitual interpretation.

In the next section, I present the formal compositional implementation of the informal ideas presented so far.
5. Structure and derivation

In this section, I present the compositional derivation of (3), repeated in (32). Its syntactic structure is given in (33) and its derivation in (34).

(32) Kofi ni sele-ɔ lɛ.
 Kofi FM swim-IMPF PART
 ‘It is Kofi who is swimming.’

(33)

```
                      FP_4  
                      ⟨st⟩  
                     /   \  
                   s_ ancestor FP_3  
                      ⟨s, st⟩  
                     /   \  
                   topic  FP_2  
                      ⟨st⟩  
                     /   \  
                λs_2  FP_1  
                      t  
                     /   \  
               Kofi  CP  
                      ⟨et⟩  
                     /   \  
                λ_1  ni  TP  
                      t  
                     /   \  
         t_ ancestor i  AspP  
                      ⟨it⟩  
                     /   \  
      - ços  VP_2  
                      ⟨et, it⟩  
                     /   \  
    ε → ⟨et⟩  
                   /   \  
  VP_1  DP  
              ⟨ε, st⟩  ⟨⟨ε, st⟩ ε⟩  
             /   \  
        x_1  sele  
              s_2  lɛ  
                 ⟨s ⟨⟨ε, st⟩ ε⟩⟩
```
The situation pronoun, introduced in the syntax as the sister of the definite determiner \(le \) and bound by the topic situation, restricts the interpretation of the VP to the events within the topic situation. The presence of the exhaustive focus marker \(ni \) assures that the proposition denoted by (32) is exemplified by the topic situation. The exhaustive focus marker \(ni \) and the \(iota \) operator denoted by \(le \) assure that there is only one swimming event in the topic situation.

The imperfective marker \(-\sigma \) relates the topic time and the event time, i.e., it locates the topic time within the running time of the event. Since \(ni \) and \(le \) assure that there is only one event in the VP denotation, (32) necessarily obtains the interpretation that there is one event of swimming by Kofi, the running time of which is included in the running time of the event leading invariably to the progressive interpretation. Therefore, an imperfective sentence (marked by \(-\sigma \)) with the focus marker \(ni \) and the definite determiner \(le \) attached to the VP always obtain an ongoing, progressive interpretation. The formal derivation of (32) is presented in (34):

\[(34) \begin{align*}
\text{a. } [[le]] &= \lambda s. \lambda P. teP(e)(s) \\
\text{b. } [[DP]] &= [[le]](s_2) \\
&= [\lambda s. \lambda P. teP(e)(s)](s_2) \\
&= \lambda P. teP(e)(s_2) \\
\text{c. } [[VP_1]] &= \lambda e. \lambda s. swim(e)(s) \land Ag(e)(s) = x_1 \\
\text{d. } [[VP_2]] &= [[DP]]([[VP_1]]) \\
&= [\lambda P. teP(e)(s_2)]([\lambda e. \lambda s. swim(e)(s) \land Ag(e)(s) = x_1]) \\
&= \lambda e. [\lambda s. swim(e)(s) \land Ag(e)(s) = x_1](e) \\
&= \lambda e. swim(e)(s_2) \land Ag(e)(s_2) = x_1 \\
\text{e. } [[-\sigma]] &= \lambda P. \lambda t. \exists e[t \subseteq \tau(e) \land P(e)] \\
\text{f. } [[Asp]] &= [[-\sigma]]([[VP_2]]) \\
&= [\lambda P. \lambda t. \exists e[t \subseteq \tau(e) \land P(e)]([\lambda e. e = te'(swim(e')(s_2) \land Ag(e')(s_2) = x_1)]) \\
&= \lambda t. \exists e[t \subseteq \tau(e) \land e = te'(swim(e')(s_2) \land Ag(e')(s_2) = x_1)] \\
\text{g. } [[TP]] &= \lambda t. \exists e[t \subseteq \tau(e) \land e = te'(swim(e')(s_2) \land Ag(e')(s_2) = x_1)](t_{top}) \\
&= \exists e[t_{top} \subseteq \tau(e) \land e = te'(swim(e')(s_2) \land Ag(e')(s_2) = x_1)] \\
\text{h. } [[CP]] &= \lambda x. \exists e[t_{top} \subseteq \tau(e) \land e = te'(swim(e')(s_2) \land Ag(e')(s_2) = x)] \\
\text{i. } [[FP_1]] &= \lambda x. \exists e[t_{top} \subseteq \tau(e) \land e = te'(swim(e')(s_2) \land Ag(e')(s_2) = x_1)](\text{Kofi}) \\
&= \exists e[t_{top} \subseteq \tau(e) \land e = te'(swim(e')(s_2) \land Ag(e')(s_2) = \text{Kofi}) \\
\text{j. } [[FP_2]] &= \lambda s_2. \exists e[t_{top} \subseteq \tau(e) \land e = te'(swim(e')(s_2) \land Ag(e')(s_2) = \text{Kofi})] \\
\text{k. } [[topic]] &= \lambda P. \lambda s''. \lambda s'. s' \approx s'' \land P(s') \\
\text{l. } [[FP_3]] &= [[topic]]([[FP_2]]) \\
&= [\lambda s''. \lambda s'. s' \approx s'' \land P(s')](\lambda s_2. \exists e[t_{top} \subseteq \tau(e) \land e = te'(swim(e')(s_2) \land Ag(e')(s_2) = \text{Kofi})] \\
&= \lambda s''. \lambda s'. s' \approx s'' \land [\lambda s_2. \exists e[t_{top} \subseteq \tau(e) \land e = te'(swim(e')(s_2) \land Ag(e')(s_2) = \text{Kofi})]
\end{align*}\]
Now I will discuss what happens when either the definite determiner \(lE \) or the exhaustive focus marker \(ni \) is not present in an imperfective sentence. Consider:

\[\text{(35)} \quad \text{Kofi} \quad \text{ni} \quad \text{sele-\(\sigma \).} \]

\[\text{Kofi} \quad \text{FM} \quad \text{swim-IMPF} \]

\[\text{‘It is Kofi who swims.’} \]

Because there is no \(lE \) attached to the VP, there is no \textit{iota} operator imposing uniqueness requirement on the VP denotation. Moreover, the VP interpretation is not restricted to the topic situation, i.e., the exemplification does not influence the interpretation of the VP. Hence, there can be more than one swimming event in the topic situation with respect to which (35) is interpreted allowing for its habitual interpretation.

By contrast, (3) without the focus marker \(ni \) is ungrammatical, as illustrated by (36).

\[\text{(36)} \quad *\text{Kofi} \quad \text{sele-\(\sigma \)} \quad \text{lr}. \]

\[\text{Kofi} \quad \text{swim-IMPF} \quad \text{PART} \]

\[\text{‘Kofi swims.’} \]

Since \(lE \) imposes a uniqueness requirement on the VP denotation, I argue that \textit{VP} \(lE \) must be interpreted with respect to the topic situation exemplifying the VP denotation. Otherwise, \(lE \) cannot be felicitously used. Since there is no \(ni \) in (36) assuring the exemplification, \(lE \) cannot be felicitously used in (36) and thereby (36) is ungrammatical.\(^6\)

To sum up this section, I have presented the compositional derivation of Progr2. It was shown that the progressive interpretation in Progr2 is an effect of the domain restriction for the VP interpretation and it is caused by the interaction between the imperfective aspect marked by the suffix \(-\sigma\), the definite determiner \(lE \), and the exhaustive focus marker \(ni \).

\(^6\)The issue why \(ni \) is not required when \(lE \) attaches to the \textit{NP} I am leaving for future research.
6. Evidentiality and not-ongoing events

In this section, I show how the proposed analysis accounts for the data presented in section 2.

As illustrated by example (37), repeated below, Progr2 is infelicitous in indirect evidential contexts:

(37) Indirect evidence context: Tom and his family (wife, 2 sons, and 2 daughters) are on the beach. Tom can see that his two sons and the youngest daughter are playing with sand. He cannot see his oldest daughter, but the younger one told him that she was in the process of swimming. Tom says to his wife:
 a. #Anna ni sele-ɔ le.
 Anna FM swim-IMPF PART
 ‘Anna is swimming.’

I argue that the direct evidence requirement in Progr2 is the by-product of the domain restriction mechanism. The interpretation of Progr2 is constrained to the actual ongoing situation exemplifying the VP denotation. Sentence (37-a) is infelicitous because the proposition denoted by (37-a) (\(\lambda s.\text{Anna swim in } s\)) is not exemplified by the contextually provided situation.

Moreover, Progr2 cannot refer to the not-ongoing events, as was presented in (7), repeated in (38):

(38) Tom and John are jogging. They are talking about books. Tom asks John which books he is reading. John replies:
 a. Mii-kane ‘Harry Potter’.
 PROG-read ‘Harry Potter’
 b. #'Harry Potter’ ni mi kane-ɔ le.
 ‘Harry Potter’ FM 1.sg read-IMPF PART
 ‘I am reading ‘Harry Potter’.’

I argue that (38-b) is infelicitous in the context of (38), because the event of reading *Harry Potter* is not an ongoing, actual situation. Furthermore, the situation of jogging and talking about books by John does not exemplify the proposition denoted by (38-b).

7. Summary

It was argued that *le* is a cross-categorial definite determiner that attached either to the NP or to the VP denotation. In order to account for the observed data, one needs the same domain restriction mechanisms in the verbal domain as in the nominal domain. Crucially, it was shown that domain restriction in the verbal domain can influence the aspectual interpretation of a sentence.
Moreover, it was presented how Progr2 can be compositionally derived from the interaction between the general imperfective marker \(-\theta\), the exhaustive focus marker \(ni\), and the definite determiner \(le\).

References

